Compactness of the Solution Operator to ∂ in Weighted L 2 - Spaces

نویسندگان

  • Friedrich Haslinger
  • Bernard Helffer
  • BERNARD HELFFER
چکیده

In this paper we discuss compactness of the canonical solution operator to ∂ on weigthed L spaces on C. For this purpose we apply ideas which were used for the Witten Laplacian in the real case and various methods of spectral theory of these operators. We also point out connections to the theory of Dirac and Pauli operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Compactness of the Solution Operator to ∂ in Weighted L 2 -spaces

In this paper we discuss compactness of the canonical solution operator to ∂ on weigthed L spaces on C. For this purpose we apply ideas which were used for the Witten Laplacian in the real case and various methods of spectral theory of these operators. We also point out connections to the theory of Dirac and Pauli operators.

متن کامل

Institute for Mathematical Physics Compactness of the ∂–neumann Operator on Weighted (0,q)–forms

As an application of a characterization of compactness of the ∂-Neumann operator we derive a sufficient condition for compactness of the ∂-Neumann operator on (0, q)-forms in weighted L 2-spaces on C n .

متن کامل

Degree of F-irresolute function in (L, M)-fuzzy topological spaces

In this paper, we present a new vision for studying ${F}$-open, ${F}$-continuous, and ${F}$-irresolute function in $(L,M)$-fuzzy topological spaces based on the implication operation and $(L,M)$-fuzzy ${F}$-open operator cite{2}. These kinds of functions are generalized with their elementary properties to $(L,M)$-fuzzy topological spaces setting based on graded concepts. Moreover, a systematic ...

متن کامل

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006